

Lesson Plan

Name of the Faculty	:	Mr. Deepak Anand
Discipline	:	Mechanical Engineering
Semester	:	4 th
Subject	:	Fluid Mechanics (PCC-ME-204G)
Lesson Plan Duration	:	15 Weeks (from April 2021 to July 2021)
** Work Load (Lecture) per	week (i	n hours): Lectures-03, Practicals-02 (Group-A & Group-B)

Week		Theory		Practical
	Lecture	Торіс	Practical	Торіс
	Day 1 st	(including assignment/test)	day 1 st	
	1^{st}	Fluid Properties & Fluid Statics:	1^{st}	To determine the
		Concept of Fluid & Flow, Ideal &		coefficient of impact for
		Real Fluids.		vanes.
	2^{nd}	Continuum Concept and		(Group-A)
		Properties of Fluids.		
1^{st}			2^{nd}	To determine the
				coefficient of impact for
	3^{rd}	Newtonian & Non-Newtonian		vanes.
		Fluids, Pascal's Law.		(Group-B)
	4 th		ard	
	4 th	Hydrostatic Equation, Hydrostatic	3 rd	To determine coefficient
		Forces on Plane & Curved		of discharge of an
		Surfaces.		orificemeter.
				(Group-A)
2^{nd}	5 th	Stability of Floating & Submerged		
2	5	Bodies, Relative Equilibrium.	4^{th}	To determine coefficient
		Boules, Relative Equilibrium.	4	
				of discharge of an orificemeter.
	6 th	Numerical Problems.	1	
	0			(Group-B)

	7 th	Fluid Kinematics: Eulerian & Lagrangian Description of Fluid Flow. Stream, Streak & Path Lines, Types of Flows.	5 th 6 th	To determine the coefficient of discharge of Notch (V and Rectangular types). (Group-A) To determine the coefficient of discharge
3 rd	9 th	Flow Rate & Continuity Equation, Differential Equation of Continuity in Cylindrical & Polar Coordinates.		of Notch (V and Rectangular types). (Group-B)
	10 th	Rotation, Vorticity & Circulation.	7 th	To determine the friction factor for the pipes. (Group-A)
4 th	11 th	Stream & Potential Functions, Flow Net. Numerical Problems.	8 th	To determine the friction factor for the pipes. (Group-B)
	13 th	Fluid Dynamics: Concept of System & Control Volume.	9 th	To determine the coefficient of discharge of Venturimeter. (Group-A)
5 th	14 th	Euler's Equation, Bernoulli's Equation. Venturimeter, Orifices,	$10^{\rm th}$	To determine the coefficient of discharge of Venturimeter. (Group-B)
6 th	16 th	Orificemeter. Mouthpieces, Kinetic &	11 th	To determine the
		Momentum Correction Factors.		coefficient of discharge, contraction & velocity of an orifice. (Group-A)

	17 th	Impulse-Momentum Relationship and its Applications.		
	18 th	Numerical Problems.	12 th	To determine the coefficient of discharge, contraction & velocity of an orifice. (Group-B)
	19 th	Compressible Fluid Flow: Introduction, Continuity, Momentum & Energy Equation.	13 th	To verify the Bernoulli's Theorem. (Group-A)
7 th	20 th	Sonic Velocity, Propagation of Elastic Waves due to Compression of Fluids.	$14^{\rm th}$	To verify the Bernoulli's Theorem. (Group-B)
	21 st	Propagation of Elastic Waves due to Disturbance in Fluids, Stagnation Properties.		
	22 th	Isentropic Flow, Effect of Area Variation on Flow Properties.	15 th	To find critical Reynold's number for a pipe flow. (Group-A)
8 th	23 rd 24 th	Isentropic Flow through Nozzles. Diffusers, Injectors.	16 th	To find critical Reynold's number for a pipe flow. (Group-B)
	25 th	Numerical Problems.	17 th	To determine the meta- centric height of a
9 th	26 th	Viscous Flow: Flow Regimes & Reynold's Number.	18 th	floating body. (Group-A) To determine the meta- centric height of a floating body. (Group-B)
	27 th	Relationship between Shear Stress & Pressure Gradient.		
10 th	28 th	Uni-directional flow between Stationary & Moving Parallel plates.	19 th	To determine the minor losses due to sudden enlargement, sudden
	29 th	Movement of piston in a Dashpot.		contraction & bends. (Group-A)

	30 th	Power absorbed in bearings.	20 th	To determine the minor losses due to sudden enlargement, sudden contraction & bends. (Group-B)
	31 st	Numerical Problems.	21 st	To show the velocity & pressure variation with
11^{th}	32 nd	Flow through Pipes: Major & Minor Losses in pipes, Hagen's Poiseuilli Law.	22 nd	radius in a forced vortex flow. (Group-A) To show the velocity & pressure variation with
	33 rd	Hydraulic gradient and Total Energy Lines, Series & Parallel Connection of pipes.		radius in a forced vortex flow. (Group-B)
12 th	34 th	Branched pipes, Equivalent pipes, Power transmission through pipes.	23 rd	To verify the momentum equation. (Group-A)
	35 th 36 th	Numerical Problems. Boundary Layer Flow: Boundary Layer Concept, Displacement, Momentum & Energy Thickness.	24 th	To verify the momentum equation. (Group-B)
13 th	37 th	Von-Karman Momentum Integral Equation, Laminar & Turbulent Boundary Layer flows.		
	38 th	Drag on a Flat plate, Boundary Layer Separation & Control.		
, .th	39 th	Streamlined & Bluff Bodies.		
14 th	40 th	Lift & Drag on a Cylinder and an airfoil.		
	$\frac{41^{\text{th}}}{42^{\text{nd}}}$	Numerical Problems.Turbulent Flow: Shear Stress inTurbulent Flow.		
15 th	43 rd	Prandtl Mixing Length Hypothesis.		

44^{th}	Hydraulically Smooth & Rough	
	Pipes, Velocity Distribution in	
	pipes, Friction Coefficients for	
	Smooth & Rough pipes.	
45^{th}	Numerical Problems.	